A piecewise linear chaotic map and sequential quadratic programming based robust hybrid particle swarm optimization

نویسندگان

  • Wenxing Xu
  • Zhiqiang Geng
  • Qunxiong Zhu
  • Xiangbai Gu
چکیده

0020-0255/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.ins.2012.06.003 ⇑ Corresponding author. E-mail addresses: [email protected] (W.X. Xu) (X.B. Gu). This paper presents a novel robust hybrid particle swarm optimization (RHPSO) based on piecewise linear chaotic map (PWLCM) and sequential quadratic programming (SQP). The aim of the present research is to develop a new single-objective optimization approach which requires no adjustment of its parameters for both unconstrained and constrained optimization problems. This novel algorithm makes the best of ergodicity of PWLCM to help PSO with the global search while employing the SQP to accelerate the local search. Five unconstrained benchmarks, eighteen constrained benchmarks and three engineering optimization problems from the literature are solved by using the proposed hybrid approach. The simulation results compared with other state-of-art methods demonstrate the effectiveness and robustness of the proposed RHPSO for both unconstrained and constrained problems of different dimensions. 2012 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Analog Wavelet Bases Construction Using Hybrid Optimization Algorithm

An approach for the construction of optimal analog wavelet bases is presented. First, the definition of an analog wavelet is given. Based on the definition and the least-squares error criterion, a general framework for designing optimal analog wavelet bases is established, which is one of difficult nonlinear constrained optimization problems. Then, to solve this problem, a hybrid algorithm by c...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

A Hybrid Particle Swarm - Gradient Algorithm for Global Structural Optimization

The particle swarm optimization (PSO) method is an instance of a successful application of the philosophy of bounded rationality and decentralized decision making for solving global optimization problems. A number of advantages with respect to other evolutionary algorithms are attributed to PSO making it a prospective candidate for optimum structural design. The PSO-based algorithm is robust an...

متن کامل

New Approaches to the Identification of Semi-mechanistic Process Models

In process engineering, mostly first-principles models derived from dynamic mass, energy and momentum balances are used. When the process is not perfectly known, the unknown parts of the first principles model should be represented by black-box models, e.g. by neural networks. This paper is devoted to the identification and application of such hybrid models. For the identification of the neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2013